

PR-MATHS-01

Seat No.

M. Phil. (Sem. II) Examination

August - 2020

Mathematics: CMT - 20001

(Topology) (Old Course)

Time: 3 Hours [Total Marks: 100

Instructions: (1) All questions are compulsory.

(2) Each question carries 20 marks.

1 Answer following ten questions:

 $10 \times 2 = 20$

- (i) Define Basis for closed sets in a topological space (X,τ) .
- (ii) Define term: compact space. Give an example of a topological space is a compact space and give an example of a topological space not a compact space too.
- (iii) Define Filter and Ultra Filter.
- (iv) Let (X,τ) be a topological space and \mathcal{F} be a filter on X. Let $\mathcal{F} \to p$ in X, then prove that p is a cluster point of \mathcal{F} .
- (v) Define ideal and maximal ideal.
- (vi) Prove that, every single-ton set in \mathbb{R} is zero set of \mathbb{R} .
- (vii) Define C^* -embedded and C-embedded.
- (viii) For a subspace S of a space X, prove that S is C-embedded in $X \Rightarrow$ it is C^* -embedded in X.
- (ix) Define zero set nbhd and give an example of zero set nbhd.
- (x) Define fixed ideal, free ideal, fixed Z-filter and free Z-filter.
- 2 Answer any two questions:

 $2 \times 10 = 20$

- (1) Prove that, countable intersection of zero sets in X is also a zero set of X.
- (2) Let X be a topological space and I be an ideal of C(X). Prove that $Z(I) = \{Z(f) | f \in I\}$ is a Z-filter on X.
- (3) Prove that (a) $I \subseteq Z^{-1}(Z(I))$ and (b) $Z(Z^{-1}(\mathcal{F})) = \mathcal{F}$, where I is an ideal of C(X) and \mathcal{F} is a Z-filter on X.

PR-MATHS-01]

1

[Contd....

3 Answer any **one** question:

 $1 \times 20 = 20$

- (1) Let I be a Z-ideal in C(X). Prove that following statements are equivalent:
 - (i) I is a prime ideal.
 - (ii) I contains a prime ideal.
 - (iii) If $f, g \in C(X)$ and fg = 0, then either $f \in I$ or $g \in I$.
 - (iv) If $f \in C(X)$, there is $Z \in Z(I)$ such that f does not change sign on Z.
- (2) For a topological space X, prove that following statements are equivalent:
 - (1) X is compact
 - (2) Every ideal in C(X) is fixed
 - (3) Every maximal ideal in C(X) is fixed
 - (4) Every ideal in $C^*(X)$ is fixed
 - (5) Every maximal ideal in $C^*(X)$ is fixed.
- (3) Let (K, h) be a compactification of X and h(X) is C^* -embedded in K. Prove that (K, h) is equivalent to $(\beta X, e)$.
- 4 Answer any two questions:

 $2 \times 10 = 20$

- (a) Prove that, every locally compact Hausdorff space is a Tychonoff space. What about the converse of this? Justify your answer.
- (b) Let (K_1, h_1) and (K_2, h_2) be two equivalent compactifications of X. Prove that there is homeomorphism $T: K_2 \to K_1$ such that $Toh_2 = h_1$ and $T^{-1}oh_1 = h_2$.
- (c) Give an example of a C^* -embedded subspace, which is not C-embedded with required justification.

5 Answer any two questions:

 $2 \times 10 = 20$

- (1) Define Z-ideal. Let $\{I_{\alpha}/\alpha \in J\}$ be a family of Z-ideals in C(X). Prove that $\bigcap_{\alpha \in J} I_{\alpha}$ is also a Z-ideal in C(X).
- (2) Let I be a Z-ideal in C(X). Does I the Jacobson radical in (X)? Justify your answer.
- (3) Let $I_k = \{ f \in C(X) / f \text{ vanish outside of a compact subset of } X \}$. Prove that I_k is a free ideal in C(X) if and only if X is locally compact space.
- (4) Let X be a space and I be an ideal in C(X). Prove that following statements are equivalent:
 - (i) $Z^{-1}(Z(I)) = I$
 - (ii) If $f \in C(X)$ and $Z(f) \in Z(I)$, then $f \in I$.
 - (iii) If $f \in C(X)$ and $Z(f) \in Z(g)$, for some $g \in I$, then $f \in I$.